Search results for " NADPH Oxidoreductases"
showing 10 items of 28 documents
Inhibitory effects on mitochondrial complex I of semisynthetic mono-Tetrahydrofuran acetogenin derivatives
2003
Modifications in the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety or in the alkyl chain that links this terminal gamma-lactone with the alpha,alpha'-dihydroxylated THF system of the natural mono-tetrahydrofuranic acetogenins, annonacin and annonacinone, led to the preparation of eight semisynthetic derivatives. Their inhibitory effects on mitochondrial complex I is discussed and compared with that of the classical complex I inhibitor, rotenone.
Requirement for the Proton-Pumping NADH Dehydrogenase I of Escherichia Coli in Respiration of NADH to Fumarate and Its Bioenergetic Implications
1997
In Escherichia coli the expression of the nuo genes encoding the proton pumping NADH dehydrogenase I is stimulated by the presence of fumarate during anaerobic respiration. The regulatory sites required for the induction by fumarate, nitrate and O2 are located at positions around –309, –277, and downstream of –231 bp, respectively, relative to the transcriptional-start site. The fumarate regulator has to be different from the O2 and nitrate regulators ArcA and NarL. For growth by fumarate respiration, the presence of NADH dehydrogenase I was essential, in contrast to aerobic or nitrate respiration which used preferentially NADH dehydrogenase II. The electron transport from NADH to fumarate …
New evidence for the multiplicity of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I.
2000
Determination of the number of ubiquinone- and inhibitor-binding sites in the mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a controversial question with a direct implication for elaborating a suitable model to explain the bioenergetic mechanism of this complicated enzyme. We have used combinations of both selective inhibitors and common ubiquinone-like substrates to demonstrate the multiplicity of the reaction centers in the complex I in contrast with competition studies that have suggested the existence of a unique binding site for ubiquinone. Our results provide new evidence for the existence of at least two freely exchangeable ubiquinone-binding sites with different specif…
Ferric-reductase activities in Vibrio vulnificus biotypes 1 and 2.
1999
In this paper, the ferric-reductase activities of Vibrio vulnificus were investigated. This species comprises two biotypes pathogenic for humans and eels that are able to express different mechanisms for iron acquisition. All strains of both biotypes used in this study were able to reduce ferric citrate, irrespective of the iron levels in the growth medium. Some variation in the degree of reduction was observed among the strains, with the highest values corresponding to one acapsulated environmental strain of biotype 1. When cell fractions were tested, only those from periplasm and cytoplasm showed reductase activity whereas no activity was detected in membranes. Low temperatures inhibited …
Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking
2013
Abstract Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Results Different age-related gene classes have been modified by deletion or o…
Tigliane diterpenes from the latex of Euphorbia obtusifolia with inhibitory activity on the mammalian mitochondrial respiratory chain
2003
Abstract Six diterpenes isolated from the latex of Euphorbia obtusifolia Poir. (Euphorbiaceae) were evaluated for their inhibition of the NADH oxidase activity in submitochondrial particles from beef heart. 4,20-Dideoxyphorbol-12,13-bis(isobutyrate) was the most potent inhibitor and showed an inhibitory concentration with IC 50 value of 2.6±0.3 mM. In the present study, some structure–activity trends are suggested for the inhibitory activity of the mammalian mitochondrial respiratory chain of these natural product derivatives of 4-deoxyphorbol esters.
Circumdatin H, a new inhibitor of mitochondrial NADH oxidase, from Aspergillus ochraceus
2005
Circumdatin H (1), a new alkaloid from the culture broth of Aspergillus ochraceus, has been isolated, together with a known circumdatin, circumdatin E (2) and other known compounds: flavacol (3) and stephacidin A (4). The structure of 1 was established on the basis of chemical and spectral evidence. All of these alkaloids showed biological activity as inhibitors of the mammalian mitochondrial respiratory chain.
Synthesis of N-diisopropyl phosphoryl benzyl-tetrahydroisoquinoline, a new class of mitochondrial complexes I and III inhibitors
2000
The synthesis of N-(O,O-diisopropylphosphoryl)-benzyltetrahydroisoquinoline (3) has been achieved in a 'one pot' procedure from imine (2) and diisopropyl-phosphorochloridate (1) generated in situ (POCl3 + iPrOH). Compound 3 is the first benzyltetrahydroisoquinoline derivative found to be a potent inhibitor of mitochondrial complexes I and III, and therefore it opens a new perspective with this series of compounds as they can be considered as new class of antitumor agents.
Polyalthidin: New Prenylated Benzopyran Inhibitor of the Mammalian Mitochondrial Respiratory Chain
1996
Polyalthidin (3), a new benzopyran derivative, was isolated from the stem bark of Polyalthia cerasoides. Its structure was established on the basis of chemical and spectral evidence. Polyalthidin has showed potent biological activity as an inhibitor of the mammalian mitochondrial respiratory chain.
Aplasia of the retinal vessels combined with optic nerve hypoplasia, neonatal epileptic seizures, and lactic acidosis due to mitochondrial complex I …
1992
A newborn male with mitochondrial complex I deficiency suffered from neonatal epileptic seizures, which later developed into infantile spasms. The infant was blind due to aplasia of the retinal vessels and hypoplasia of the optic nerve. There was congenital lactic acidosis, which persisted in later life. The boy was microcephalic and retarded. Muscular hypotonia later shifted to spasticity. Succinic acid was increased in urine. We assume that the aplasia of the retinal vessels is due to damage of the retinal ganglion cells caused by the mitochondrial disease in the first 3 to 4 months of pregnancy.